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A comparison is made between the effects of spreading the source (thus causing 
interference) and of viscosity in the Kelvin ship-wave problem. Two simple 
pressure distributions are considered and in both it is found that spreading, 
like viscosity, introduces a multiplicative damping factor into the inviscid 
pressure-point solution. In one case it is this factor, rather than that of viscosity, 
which dominates the decay of the wave profile, while, in the other, the effects 
alternate in importance as one travels along any particular wave crest, 

1. Introduction 
The classical solution to the Kelvin ship-wave problem has a singularity at  the 

origin of disturbance. Ursell (1960) said that this would be eliminated if the 
pressure-point distribution were replaced by a spread source (thereby causing 
interference). An alternative method was given by Cumberbatch (1965), who, on 
introducing a littIe viscosity, found that the classical inviscid solution has to be 
multiplied by an exponential decay factor which takes the wave profile to zero 
at  the origin. The two effects, one of spreading the surface pressure, the other of 
viscosity, are compared in this paper, and the results shown graphically in Q 3. It 
is found, for the first of the two pressure distributions considered, that spreading 
introduces an exponential decay factor and that this is more important than the 
viscous effect for large Reynolds numbers at least. The second pressure distri- 
bution is one of finite extent, and the effects now alternate in importance as one 
travels along any particular wave crest. However, if the Froude number is 
greater than 0.627, it  is the viscous factor which dominates the decay of the 
transverse wave system at large distances from the ship. 

Pressure distributions are chosen which are easy to manipulate and which 
introduce a simple length scale. This length plays a significant role in the non- 
dimensionalization and is basic in the definition of the Reynolds number Re for 
the problem. The work of Cumberbatch had no such natural ‘ship ’ length and he 
was forced to use an artificial one (see his equation (19)). This meant that his 
Reynolds number in many practical applications was too small, which, in turn, 
overemphasized the effect of viscosity. 

In  the analysis of $2 a double integral is evaluated asymptotically. The method 
is a consistent one avoiding the difficulties mentioned at the end of $ 2  in Cumber- 
batch’s paper, and showing his numerical results to be true to a high degree of 
accuracy. 
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2. Equations 
Cumberbatch's formulation of the problem is taken as a starting-point. His 

delta-function normal stress is replaced in the first instance by a spread source 
of the form 

where P is constant and a is the fundamental length scale. The non-dimensional- 
ization is redefined as 

5 = x/a, jj = y/a, F = r/a, E = ctaf2, 3 = /3af2, R = Re f 2  = Uaf2/v, ( 2 )  

where f is the Froude number, U/(ag)*. One finds on dropping bars that the di- 
mensional wave profile is now 

G =  - ( P /  7i-) exp { - (X2 + y2)/a2}, (1) 

- 

7 = - P(4n74pg)-l Jy" --m exp {i(aX+PY)/f2)exP{- (.2++p")/4.f4} 

x D-1(a7/3, R)dold/?, ( 3 )  

where 11 is given by Cumberbatch's equation ( 2 2 ) .  
It is convenient at this stage to leave Cumberbatch's analysis and follow the 

work of Crapper (1964) on the inviscid pressure-point problem. With a rotation 
of axes, (3) becomes 

7 = - P(4772f4pg)-l 1 -m j " exp {iar/j2} exp { - (a2 + , ~ ) / 4 j 4 ) ~ - 1  c~cig, (4) 

a = zcose-psine, p = zsint?+pcos8; x = rcose,  y = rsin8. (5) 

--a, 

where 

By a residue calculation 

7 -P(4n2f4pg)-12niSJm exp{iEr/f2}exp{-(Z2+~2)/4f4} [z] a l l  -1 d/?, - (6) 

--m 

for large r ,  the summation being over all values of E for which D = 0. The deter- 
mination of these E is not easy. They can only be found approximately. Return- 
ing to Cumberbatch, and expressing the solution to D(Z) = 0 as a power-series 
expansion in inverse roots of his Reynolds number R, one finds such Z have the 
form 

z = A , + C , R - ~ + O ( R - ~ ) ,  ( 7 )  

where o = 1 -(A,cose-gsin8)2(A21+PB)--g, (8 )  

and (9) 

By the transformation t; = A ,  cos 0 -psin 8, (10) 

one can find expressions for A and C, as functions of 8 and 5. Bearing in mind that, 
if R tended to infinity and the source were concentrated to a delta-function, 
Crapper's problem would be realized, it can be shown that A ,  must be real. If 
from now on terms O(R-l) are neglected unless they appear in the formr/R, which 
is in its turn considered much smaller than r,  then (6 )  can be evaluated by the 
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method of stationary phase giving 

where 

and 
1 

(4 tan2 8 + 1 f (1  - 8 tan28)t). 
5 2 =  8tan28 

This evaluation is only valid because @/d{ + 0 when 5 is given by (13), and 8 is 
taken such that 181 < 8, (see Crapper, $3).  Carrying out the algebra in (l l) ,  one 
finds 

7 - uKf2[exp { - 9C4} exp { - r cos 8B/Re}]f-4, 

where B = 4p/(2c2- I ) ,  (15)  

and K is Crapper’s inviscid solution for a pressure point. 
If the infinite distribution of pressure given by (1)  is replaced by a finite distri- 

bution of the form - PH(a - r ) ,  where H ( $ )  is the Heaviside unit step function 
defined by 

H ( $ )  = 0 if Q < O , }  

= 1  if Q > O ,  

then the interference term, exp{ - (a2 +P2)/4f4), in (3) must be replaced by 

and (14) becomes 7 - aK2n{-2J1(52/f2) exp - 

3. Results 
The variation of amplitude along a particular wave crest can be calculated 

from (14) by keeping ax5 +By constant, say ro (see Crapper, $3). There is a phase 
shift of +7r on the line 8 = 8, but this is ignored for the sake of clarity. The vari- 
ation of c4, the spreading coefficient in the first case, and of r cos 8B/4ro, theviscous 
coefficient, are given in figure 1. They are plotted against variation in 8 as one 
travels along a crest from 8 = 0 on the transverse wave to 8 = 8, and then back 
again on the diverging wave (which goes to the origin). It is clear that the spread- 
ing coefficient is faster growing. In  fact it is not difficult to prove that 

4r0 C4/r cos 8B + 00 

as 8 .+ 0 on the diverging wave. Because of this the wave profile tends to zero at  
the origin ( K  + co non-exponentially). 

Points at  which the viscous and spreading factors in (14) are equal can be 
shown to lie on a circle. This circle, which touches the lines 8 = f 8, and has 
non-dimensional radius &Re, is illustrated in figure 2. The decay of waves in the 
first region (nearest the origin) is chiefly due to spreading, while viscosity is the 
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more important effect in the third region. In  between, spreading dominates the 
decay of the diverging wave, and viscosity that of the transverse wave. Since K is 
O(r-4) and Re is very large, all waves of any practical interest will be in the first 
region and hence dominated by the effect of spreading. 

I 
Spreading (upper curve) 
Viscosity (lower curve) 

0 5 10 15 8, 15 10 
Transverse Diverging 

e 
FIGURE 1 

FIGURE 2.  The wave crests shown are just three of many which might have been drawn. 
Their phase shift on the line 0 = 0, has been ignored for the sake of clarity. The parts of 
the wave crests represented as dotted lines are dominated by viscosity, and those as 
dashed lines by spreading (interference). 
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The second pressure distribution is now considered. Since gz, which is unity for 
8 = 0 on the transverse wave, increases to 1.5 a t  8 = 8, and then tends to infinity 
as 8 -+ 0 on the diverging wave, it is clear that the zeros of the oscillatory function 
Jl(cZ/fz) in (17) lie on two pencils of lines within the wedge < 8,. One set, finite 
in number, gives the position of the zeros on the transverse wave system as a 
function of the Froude number f ,  while the other set, which has a limit point at  
8 = 0 ,  gives the position of zeros on the diverging wave. The first set is the null 
set iff > 0.627 and the zeros of J-(gZ/fz) affect only the diverging wave pattern. 
However, there exists an infinite set of discrete Froude numbers which are less 
than 0.627 for which Jl(c2/fz) is zero at c2 = 1.5. These are Froude numbers for 
which the large amplitudes at 101 = 8, (see Crapper’s equation (38)) can be elimin- 
ated and for which one might expect a reduction in wave drag. In  fact f = 0.627 
corresponds very closely to the maximum Froude number, as calculated by 
Barratt (1965)) for which the wave resistance of a circular hovercraft has a local 
minimum. 

While it is obvious that viscous decay dominates the transverse wave system 
at great distance from the ship (large r in (17)) provided f > 0.627, it is not clear 
as one travels in along a diverging wave whether this effect, rather than that of 
interference due to spreading, is more important. Although the viscous term 
tends to zero exponentially, the interference term is periodically zero. Neverthe- 
less, given any r,  f and R, one can calculate the sequence 8,, 82, 03, . . ., where it is 
possible to say viscosity is more important in the range 8, > 8 > for n even, 
say, and interference more important for n odd. There are two such sequences; 
the one for the transverse waves is finite, while that for the diverging waves has a 
limit point at  8 = 0. 

The author acknowledges the assistance of G. D. Crapper in the preparation of 
this paper. 
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